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The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics
of a system with a conserved order parameter is investigated in the Bray-Humayun RtodgelRev. Lett68,
1559 (1992] and in the Cahn-Hilliard-Cook modé¢l. Chem. Phys28, 258 (1959; Acta Metall. 18, 297
(1970]. From the comparison of the structure factor in the two models the generic pattern of the overall time
evolution, based on the sequence “early linear—intermediate mean field—late asymptotic regime” is extracted.
It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the
parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature.
The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in
a simple way through the structure of the solution of the Bray-Humayun m@tE063-651X98)10310-0

PACS numbg(s): 64.60.Ak, 05.70.Fh, 64.60.My, 64.759

[. INTRODUCTION transition from the preasymptotic to the asymptotic regime is
an important preliminary step in the development of a full
Phase-ordering kinetics is very much an open problem inheory of phase-ordering kineti¢3,8]. In this respect, the
nonequilibrium statistical physics. Its quite simple formula- effort undertaken in the past few yedi®,10] to make an
tion is in striking contrast with the difficulties encountered in assessment of the relevance of the lakgmodel[11] in the
its study, due to the strong nonlinear nature of the problemtheory of phase-ordering kinetics has turned out to be quite
During the past two decades much attention has been dgroductive. Summarizing briefly, the largé-model is the
voted to this field and much progress has been made in thenly exactly soluble model presently available for phase-
understanding of what goes on after a quench inside the ursrdering kinetics with a conserved order parameter. The
stable region of the phase diagrdii. In particular, the late asymptotic behavior of the exact solution for the structure
stage of the evolution has been studied with great care, leadactor in this model displays multiscalii] in place of the
ing to a detailed knowledge of the scale invariant asymptotistandard scaling usually observed in experiments and simu-
time regime. Despite this progress, however, most resulti&tions. Then the question was raised whether multiscaling is
recently obtained are still based on uncontroléetlhocap-  the true asymptotic behavior in all cases. The issue was
proximations relying on the unproven dynamical scaling hy-settled by Bray and Humayun by introducifitR,13 a more
pothesis, while a systematic theory allowing for the deriva-general model that contains the lafyanodel as a particular
tion of late stage properties from first principles is still far off case and displays standard scaling in the asymptotic regime
[2]. for all finite values ofN, whereN is the number of order
Leaving aside this difficult problem, in this paper we parameter components. From this result it follows that mul-
mainly focus on what happens before the scaling regime itiscaling as an asymptotic property holds onlifs strictly
entered, aiming at a comprehensive description of the overaihfinite, while for finite N at most it may be observable as a
time evolution in a system with a scalar conserved ordepreasymptotic feature.
parameter. Specifically, we will consider the Cahn-Hilliard- Continuing this line of reasoning, in this paper we carry
Cook (CHC) model[3,4] or model B in the classification of out a detailed analysis of the Bray-Humay(BH) model,
Hohenberg and Halperiib]. The study of the preasymptotic arriving at a fairly complete picture of the mechanism regu-
regime[6,7] has been hitherto somewhat neglected becausiating the structure of the preasymptotic behavior and, more
of the absence of scaling and universality. This feature, ofimportantly, we find that it applies also to the CHC model.
the one hand, makes the understanding of the preasymptotidfe main result then is that what appears to be the generic
less urgent and, on the other, makes it a more difficult subpattern in the overall time evolution is based on the sequence
ject to study than the late stage. As a result, all that we haviearly linear—intermediate nonlinear largé- (or mean
in terms of early stage theory essentially boils down to thdield)—asymptotic fully nonlinear behavior€ombinedwith a
linear approximatioi3]. Nevertheless, it seems clear that anstrong dependence of the time scales of these regimes on the
understanding of the complex phenomena taking place in thiength scale. To be more specific, in wave vector space we
identify three regions characterized by greatly different du-
rations of the preasymptotic regimes and, furthermore, these
*Electronic address: claudio@ictp.trieste.it durations can be modulated by the choice of the parameters
"Electronic address: zannetti@na.infn.it of the quench. The three regions are the one around the peak
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of the structure factor and the two to the rlght and to the |eﬁeter in the broken Symmetry phase' @gq)(lz) is the con-
of the peak. The concurrence of all these elements gives ris[ ¢

10 a rich variety of behaviors in the preasvmptotic henom_ﬁbution of thermal fluctuations. The problem is to describe
enolo whichycan be nicel sortedpout gnarl) ticallp on thehow this form of the structure factor evolves out of the initial
9y y y y form (4). The parameters of the quench @&eand Tg.

basis of the equation for the BH model, but holds true for the The physical picture arising from experiments and simu-

full CHC model as well. lations is clear: After a certain initial transient, order is es-

The paper is organgd_ as follows. In Sec. Il we IntrOducetablished over domains of sizgt) and within domains ther-
the model and after defining the observables of interest, WE I fluctuations have relaxed to equilibrium. Once this

dlscu3§ the Imgar, mean field, and BH approximations. Th%rrangement is achieved, memory of the initial condition is
numerical solution of the BH model is analyzed in Sec. lIl. lost and the subsequent time evolutiéate staggis essen-

The co_rrespondmg _anaIyS|s of t_he simulation of the CHCtiaIIy limited to the coarsening of the ordered domains with
model is presented in Sec. IV. Finally, Sec. V contains con;

cluding remarks. A partial preliminary account of these re_thermal fluctuations enslaved in the equilibrium form. Phe-
9 S. A partial p y nomenological argumen{d] tell how the size of domains
sults was published previous[{4].

grows in timeL (t) =k, *(t)~tY?, wherek.(t) is the peak
wave vector of the structure factor aaeF3 or z=4 in the
scalar or vectorial case, respectively. At this stage, the struc-

We consider a system described byNtaomponent order  ture factor can be spl[2] into an ordering and a fluctuation
parameter that evolves according to the CHC equation for &omponent, which are, to a good approximation, decoupled
conserved order parameter,

1. MODEL

C(K,t)=Corg(k,t) +Cr_(K.1). (6)

V()

ab(x,t) B,
= L _y?
ad ¢

ot

v2 +7(X,1), (1)

The ordering component scales with respect to the size of
domains

where V() = (r/2) >+ (g/4N)($?)?, with r<0 andg>0,
is the “sombrero” potential and is a Gaussian white noise, Cord(K,t)=MZ(T)L¥(X)F(X) 7
with expectations
with a@=d, the space dimensionality of the system, and
<;7(>Z,t)>:0, =kL(t). The above scaling form is a finite size representa-
tion of the Bragg peak and reveals that the late stage evolu-
R R L. tion is a critical phenomenon characterized by the pair of
(X1 (X' 1)) =—2T£8,5V28(x—X") 8(t—t"). exponents §,z). The final temperatur& enters only in the
) prefactorM?(Tg) and the exponents are independent of both

Here T, is the final temperature of the quench. In the fol- A andTe. In this sense the late stage is universal and scale

lowing we shall consider processes with a high-temperatur@va”am’ with an attractive fixed point a=0. Most of the
uncorrelated initial state recent theoretical workl,15] has been concentrated on the

study of the scaling functiof(x), obtaining successful re-
.. sults through approximations based on the assumption that
((x,0)=0, scaling holds. Much less is known about the process before
the late stage is entered, when the time evolution is still
- > > > sensitive to the actual values of the parametérsTf), the
(6a(x.0)b5(X",0))=A8epd(X=X"), ®) scaling form(7) does not yet hold, and the separation into an
whereA is the size of the initial fluctuations. In the subse- ©rdering and a fluctuation component is a much more deli-
quent time development the average order parameter remaifi§te issue. In the following we address the theoretical study
zero and the observable of interest is the equal time structuf® the preasymptotic behavior.
factorC(IZ,t) given by the Fourier transform of the generic
component of the correlation functidb,,(X,t) ¢.(x',t)).
If the final temperature is below the critical point we  The traditional early stage theory is the linear theory ob-
know that the structure factor evolves from the initial form tained by settingg=0 in Eq.(1). It is then straightforward to
compute the structure factor

A. Linear theory

C(k,0)=A (4 ) R .
C(k,t)=ACJ(k,t)+ TC(k,1), (8)
towards the equilibrium form F
where
lim C(k,t)=M?(Tg)8(Kk) +CEV(k), (5)
t—oo N
CY(k,t)=exq — 2k?(k?+r)t] 9)

where the first term is the Bragg peak associated with order-
ing, with an equilibrium valueM (Tg) for the order param- and
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c<'>(12t)=?1 {1—exd —2k*(K2+1)t]}. (10 S(t)zf—dddk C(k,t) (16)
T k2 +r ' (2m) o

The distinctive features of linear behavior ipexponential ~ This equation can be solved analyticgl}, yielding the full
growth fork<ky= J=r [in particular the peak wave vector time evolution from the initial conditio¥) to the final %qU|-

of the structure factor remains at a constant vakye librium form (5). However, the time development 6f(k,t)
=ko/\/§ (except for very short times whef->0; see the obtained in the late stage of this model differs in several
Appendix] and respects from the expected behaviéy and (7). First of all,

the contribution of the structure factor associated with the
buildup of the Bragg peak takes the multiscaling form

C(Kpm,t)~expit, (11)
(i) atk=kq C(K,H)~[L(knL)?*~*F(x), (17)
whereL(t)=tY4  kq(t) is the peak wave vector related to
R A for Tg=0 L(t) by
Clko,)= 2Tek3t  for  Te>0, (12
(kpL)*=d InL+(2—d)In(kyL), (18

and (i) for k>k, the structure factor relaxes exponentially )
to and x=k/k,(t). Then the exponent&(x) and the scaling
function F(x) take different forms for the quenches to finite
temperature with &Tg<T. and for Te=0. In the former
. [0 for Tg=0 case
C(k)= ) (13)
Tel(ke+r) for Tg>0.

2+(d—=2)h(x), x<x*
This approximation is useful to describe what happens in the a(X)=at(X)= 5 -
very early stage, when the requirement for the linear approxi- p X=X
mation to hold is met, namely, when the size of the nonlinear,
term in Eq.(1) is small with respect to the linear one. For the
initial condition this implies thaA<M§= —r/g (smallA),
whereM is the equilibrium value of the order parameter at F(x)= 2 (20)
zero temperature, at the bottom of the sombrero potential. X
Conversely, ifA:M(ZJ (largeA), the linear theory does never n2 o
apply. However, even when it applies at the beginning, atVith X =2 andy(x)=1-(1-x%?, while in the latter
some point this approximation is bound to break down due to
the exponential growth fdk<k,. Furthermore, the forni8) a(X)=ag(X)=di(x) (21
does not describe coarsening since the peak value of the
wave vector remains constant in time and the scaling forngnd
(7) never applies. In short, the linear early stage theory does
not connect to the late stage theory. This is true also to any F(x)=1. (22)
finite order ing. Therefore, any approximation aiming at a
global description of the phase-ordering process must nece$his result shows that the infinite resummation involved in
sarily involve some form of infinite resummation of the ex- the lowest order of the W expansion, although producing
pansion in powers of. equilibration and formation of the Bragg peak, does so in a
qualitatively different way from what is expected in the full
CHC theory sincéi) the finite size representatidf?) of the
_ N Bragg peak displays multiscaling in place of the standard
In analogy with the theory of critical phenomena, oneform of scaling(7) and (i) the fixed point structure regulat-
may explore the N expansion as a method to organize in-ing the asymptotic scaling properties is different as the spec-
finite partial resummations. To lowest ord&argeN mode),  trum of exponents and the scaling function are no longer
one obtains from Eq.1) the equation for the structure factor independent of the final value of the temperature. TAt
=0, in place of an attractive fixed point, there is an isolated
IC(K,t) prio . , fixed point. Then there is a line of fi>_<ed points_ foKG’F
= = -2k Tk*+R(t)]C(k,t)+ 2k T, (14 <T,. (all sharing the same asymptotic propentiesd, fi-
nally, there is yet another isolated fixed pointTat. It has
now been clarified10] that the formation of the Bragg peak
in the largeN model is associated with a condensation pro-
cess rather than to the phase-ordering process. Why this
R(t)=r+gS(t) (15 ought to induce multiscaling is not clear. In any case, this
seems to say that the type of resummation involved in the
and largeN model is not enough to produce phase ordering nor

(19

B. Large-N model

with
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40 ‘ - observable at the beginning of the quench, this will yield to
the true asymptotic behavior GI(TTO(IZ,I) first where the
difference

da(X) = ar(X) — ao(X) (26)

ofx)

is the largest and then gradually the crossover from
ci™(k,t) to C(T’;‘f)(lz,t) will propagate in time to the length
scales wher&Sa(x) is smaller. Thereforeda(x) is the key
quantity that controls the wave vector dependenct” (k).
In the case at hand, the crossover will take place very fast for
large values ofk and will then propagate towards from
above. When it takes place arouxid it occurs also for small
o _ values ofx, eventually propagating towards=1 from both
FIG. 1. Spectrum of multiscaling exponents in the laNje- the right and the left. Thus the peak of the structure factor is
model withd=3, Te=0 [ao(x)], andTe>0 [ar(x)]. the wave vector region where the crossover time is the long-

) ) est. The rich variety of behaviors generated by 8) asA
can phase ordering be recovered by perturbation theory,q_ are varied has been studied in great detail in Ref.
about theN=o limit. In the following we shall refer to the [10].

behavior described above as mean field behavior.

In order to expose some features of the solution that are
relevant also beyond mean field theory, it is convenient to
consider the integral form of Eq14), A significant improvement over the largé-model is ob-
tained in the BH model. By combining the Gaussian auxil-
iary field approximation of Mazenkpl6] with the 1N ex-
pansion, a nonlinear closed equation for the structure factor
is derived[12]
which yields the structure factor as the sum of two contribu-
tions

C. Bray-Humayun model

C(k,)=ACE(k,t) + TeCM (K1), (23)

aC(K,t) R k2 .
P =—2k2[k2+R(t)]C(k,t)—ZNR(t)D(k,t)
t
(mf), — _ 2 L2 '
cMO(k,t) exp[ 2k Jodt [k2+ R(t )]), (24) 2K2T,, )
with
9 t CIM(k,t
Cgrrli]f)(k,t):2k2fodt,—c(?nf)((|zt’)) (25 . ddkl ddk2 L R R _
0 ! D(k,t)szf WC('(—kl,t)C(kl_kz,t)C(kz,t)

coupled together through the self-consistency relation re- (28

uired by the definition oR(t) in Eqgs. (15 and (16). If
q B y. (mf) »( ) as. (19 ( .) andR(t) defined by Eqs(15) and(16). Even if the largeN
TF_.O obwous_ly o_nIyCO (k1) enter_s the s_elf-c_onsstency model is contained in Eq27) as a particular case recovered
relation and this yields the asymptotic multiscaling behaworin the limit N—oc, it is not possible to pinpoint the correc-

qharactenzgd byeo(x). Instea.d,. 'ﬂ—F#.O’ both terms on the tion made, due to the uncontrolled character of the approxi-
right-hand side of Eq(23) E)artlmpate in the self-consistency | -«ion involved in the Gaussian auxiliary field mettdg].
relation. EventuaIIyC(Trzf)(k,t) prevails and the asymptotic Nor is it clear how to proceed, at least in principle, in order
multiscaling behaviof17) with a+(X) is obtained. However, to improve upon Eq(27). In any case, the merit of the BH
before reaching this regime, there may exist a time intervagquation is that in the late stage standard scaling is recovered
where the two terms do compete. This clearly depends on ther any finite value ofN. This means that whatever correc-
relative magnitude ofA and Tr. Less obvious is that it tion is contained in the BH model, it is enough to describe
should depend also on the length scale and that there shoupthase ordering rather than the condensation process appear-
therefore be a wave-vector-dependent crossover tirtle). ing in the largeN model. Therefore, the BH equation may be
In order to understand how this comes about, a glance at Figegarded as the self-contained definition of a basic model for
1 is sufficient. The exponent(x) is related to the rate phase-ordering kinetics. Even though the model does not al-
of growth of the structure factor at some length scalelow for a complete explicit solution, the structure of the for-
Roughly, ap(x) and a(x) indicate how fasC{"?(k,t) and mal solution in conjunction with numerical analysis allows
CM(K 1), respectively, grow at the different wave vectors us to follow in great detail the Qverall_tlme deve!opment and
Te A5 ' to uncover how the asymptotic scaling behavior gradually
as time goes on. Figure 1 shows that(x) > ao(X) every-  arises from the nonuniversal preasymptotic behavior.
where, except at=1, whereao(1)=ar(1)=d. Hence, if Going over to the integral form of E427), we find the
A/Tg is sufficiently large for the behavior @{"?(k,t) tobe  generalization of Eq(23),



5414 CLAUDIO CASTELLANO AND MARCO ZANNETTI PRE 58

R . . 1 R with x=KkL,(t) and whereL,(t) andL,(t) are two growing
C(k,t):ACBBH)(k,t)+TFC(TBFH)(k,t)+ NCE?H)(K'[), lengths. As we shall see, the determination of the spectrum
(29) of exponentsx(x) is quite informative. Numerically this is
done by considering:(E,t) over subsequent and nonover-
with lapping time intervalsr; . After taking the logarithm of Eq.
(34) one has

R t
chH>(k,t):eXp[ —2k2f dt'[k?+ R(t’)]], (30 INCX/Ly(1),t]=a(x,H)INLy()+INF(x) (35
0
anda(x,t) can be computed as the slope oCI(IZ,t) versus
(BH), & In £4(t) for the different times in the intervat , with x fixed
CBHI(K t)=2k2Jtdt’ Co (kD) 31) andk=x/L,(t). In practice this amounts to the measurement
Te A 0 CBBH)(IZ,t’)’ of an effective exponent(x,t)=dInC(k,t)/dIn L (t) of

the type introduced in critical phenomena for the study of
crossovers between competing critical behaviors. Here the

) ¢ CgBH)(IZ,t) R timet is the parameter driving to criticality and scaling holds
CE?H)(k,t):—ZKZJ' dt' — g7, R(t)D(Kt'), when the effective exponent is independentt.ofStandard
o Co(kt) scaling corresponds to£;(t)=L,(t)=L(t)=t? and

(32 a(x)=d, while multiscaling corresponds toL4(t)
=L(O)[kn() LD, Lo(t) =kp'(t), and a(x) genu-
ely dependent ox.

From the structure factor other quantities can be com-
uted numerically, giving insight into the preasymptotic be-
avior. In the following we will consider the position of the
eakk,(t) and its heighC(k,,,t). Their asymptotic behav-

lors are

where again the self-consistency is implemented through th
definition of R(t). In general this is a very complicated non-

linear integral equation that must be handled numerically. O
the other hand, considerations of the type made about E
(23) may be extended to the present case and simplificatio

may be expected if the conditions for one of the terms on th
right-hand side to prevail over the others are realized. First o
all, the nonuniversal features dependent on the parameters of 13 a3

the quench &, Tg) are associated with the first two terms, Km(D~17 C(kp,)~1 (36)
while the asymptotic behavior is due to the third one. Takin I
only this last term into account, Bray and Humayun havgror the CHC _mfoclilel, Whh”e in the larg-model from Eqs.
been able to extract the scaling behavior that obeys the staﬁy) and(18) it follows that

dard form(7) with

n 1/4
km(t):(T) . C(ky,t)=tY4(Int)(2-dAd (37
2

x= for x<1

F(X)~ e~ C®-DNN  for  y—1 (33  For future reference it is useful to apply the multiscaling
analysis to the linear approximation. Whé@ip=0 and A

e 2 for x>1, >0, from Eq.(9) one finds

wherec, andc, are constants. The exponential decay for
large x has been obtained numericall§$7] and confirmed
analytically [18], while the other two results are analytical
[12,19. Before the asymptotics are reached, the behavior of
the structure factor is the result of the interplay of all the +InA, (38
terms on the right-hand side of EQ9). If there exists a time ) ) )

interval where the first two terms actually dominate over theVhich gives the effective exponent

third one, one may anticipate the occurrence of mean field

4
m

BTN ON Ry

YOOIN[L (kL) 2974

behavior[12,13. Furthermore, on the basis of the previous 2kt
discussion, one may also anticipate that this will be very a(x,t)= a1 (%), (39
sensitive to the relative magnitude df Tr,1/N and that In[L(KmL)“" 7]

there will be a wave-vector-dependent crossover time. namely, the spectrum is of the multiscaling fof@t) with a

prefactor linearly growing with time. This explicit time de-
D. Multiscaling analysis pendence shows the absence of scaling. £e10 and T
In order to cover all possible behaviors it is quite useful to>0 the computation of(x,t) is slightly more complicated
introduce the multiscaling analysis of the structure factor@nd is reported in the Appendix.
Both the standard scalin@) and the multiscaling17) be-
haviors can be written in a unified general form as E. Numerical solution

R The numerical solution of the CHC equati@h requires
C(k,t)=[L(t)]*MF(x), (39 a lot of computer resources. This is due to the need of reach-
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FIG. 2. Structure factor in the BH model witth=2, N=10°, FIG. 3. Time evolution of the inverse peak position of the struc-

A=10"8, andTg=0. Different curves correspond to exponentially ture factor in the BH model.
growing times. The same applies to all other plots of the structure
factor. A Te=0

We start by considering the case of a quench to zero final

ing long times, in order to study the asymptotic behavior,temperature for a system with=10° and A=10"8. The
and of considering large systems, in order to avoid finite sizgyverall evolution of the structure factor is rather complicated
effects. The task of analyzing in detail the effective exponentind in order to sort out all the features entering it, very good
a(x,t) makes things worse because it crucially depends on quality of data is needed. Therefore, we present the data
very precise estimate of the structure factor. This involvesbtained ford= 2, which are much less noisy and are quali-
the use of very large systems and the average over marigtively the same as those fdre=3, sinceT=0. With T¢
realizations of the initial fluctuations and the thermal noise.=0 the competition is reduced to the first and the third term

Since no averaging over realizations is required, the Brayon the right-hand side of Eq29). Following the reasoning
Humayun model has been solved by simple discretization opresented in Sec. I, this depends on the valueA aindN
the equation of motion for the correlation function in real and on the rates of growth of the two terms at the different
space, which involves only Laplacians. The size of the syswave vectors. Figure 2 is a double logarithmic plot of the
tem has been chosen to be 192dr d=2 and 160 for d  time evolution ofC(k,t) from the very beginning up to some
=3. time inside the asymptotic regime. Basic features are the

For the scalar case we have resorted, instead, to the cdlrompt appearance of power law tails on both sides of the
dynamical system(CDS), a cellular automaton that repro- Peéak and a more elaborate behavior of the peak. In particular,
duces accurately the solution of the CHC equation, whildhree sharp regimes are identifiéearly, intermediate, and
being computationally much more efficief20]. We have late stag:;: which are clearly separated by almost abrupt
considered the version of the CDS algorithm wittx) ~ changes in the positidky,(t) and heighC(ky,t) of the peak
=Atanh§) and have taken the parametefs-1.3 andD fat t|mest1 gndtz (see also F|g§. 3 and4n the early stage,
~0.5, 50 thatVl(Te=0)=+0.977 67. We have considered i.e., in the interval (@;), there is no coarsening ahg, stays

lattices of size 512for d=2 and 128 for d=3. In the initial constant in time with high accuradfig. 3), as predicted by

state we have considered a uniform distribution of the ordeFhe linear approximation. That there should be a linear re-

o gime could have been anticipated from the tiny value of the
SZ{Sem;Eetrhzeggfaegte)grzng%szo tt::%tr_u?:té %g fI;gtroerarfgs initial fluctuations and it is further confirmed by the behavior
F

; " of C(kn,,t) in Fig. 4, which obeys well Eq11). According
been averaged over a suitable number of realizations. T m D .
values ofk_(t), C(k..t), anda(x,t) have been obtained by ht% the linear approximatiof®), on the sides of the peak there

. . 4 . ] should be an exponential decay k both to the right
l:nutﬁirfilaltilr?g IF(P;LejztisnpeherlcalIy averaged valuedgk,t) with a Cg')(k,t)~e*2k4t and to the Ieftcg)(k,t)~e*2k2”. This

P ' holds true immediately after the quench, but very sGan,
for t<t,), even if the peak stays in the same place, the
exponential decays are replaced by power laws. These are

In this section we present the multiscaling analysis of thePPviously nonlinear effects. The competition between
structure factor in the BH model. As pointed out above, ianBH)(k,t) and CEﬁ’H)(k,t) leading to the breakdown of the

the asymptotic regime scaling is of the standard type afinear approximation follows a nontrivial pattern with
long as 1IN is not zero because the nonlinear contributioncg?H)(Q,t) taking over first at small and large wave vectors
CEF,‘H)(IZ,I) in Eq. (29) is eventually the largest for all values and then closing towards the peak from both the right and the
of x. Here we are mainly interested in the numerical study ofleft. The propagation of the breakdown of the linear approxi-
the preasymptotic regime and in the identification of patterngnation from high to low wave vectors has already been dis-
due to the interplay of the three terms on the right-hand sideovered and analyzed in detail in the nonconserved|@ige

of Eqg. (29). Here we find evidence that, through a different mechanism,

Ill. RESULTS FOR THE BH MODEL
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FIG. 4. Time evolution of the height of the structure factor peak i
FIG. 5. Scaled structure factor of Fig. 2.

in the BH model.

this breakdown follows a yet richer pattern characterized byanomaly localized arounth whose origin seems to be puz-

the bilateral convergence towards the peak. zling. This is especially true considering the behavior of
Concerning the nature of the power laws, for small wavek,(t), which obeys the same power law very precisely, with

vectors we findC(k,t)~k?, implying that the asymptotic z=4, before and after the anomalsee Fig. 3 For the peak

behavior(33) is established almost from the start. For largeheight, while the power law is well obeyed withiz=0.53
wave vectors, instead, we fir@d(k,t)~k™" with n~4. In-  for t>t,, the behavior in the intermediate regirme<t<t,

terestingly, even though this nonlinear feature sets in evenannot be easily fitted to a power law. The insight into what
before the appearance of tké power law for smalk, itis  is going on is obtained by making a data collapse of the

very different from the exponential decay of E§3) and it  structure factor(Fig. 5), which gives evidence for the exis-
lasts quite long before yielding to the formation of the truetence of a crossover, in the region around the peak, between

asymptotic behavior. This phenomenon is not related to théwo different scaling forms. Both the preasymptotic and the

interplay of terms on the right-hand side of E9). Rather, asymptotic scaling functions are well fitted by the form

it may be related to the formation in the early stage of un-

stable localized topological defects. Such a phenomenon is

present also in simulations of the CHC equation withd

and will be studied elsewhef@2]. In any case, the bottom ) ]

line is that on the tails there is practically no competitionWhich describes the large-[9] and the BH structure factor

betweeanBH)(lz't) and CQIBH)(E’t)’ as the latter contribu- [12,1@ around the peak. The change in the valueadh

tion soon prevails, while a long lasting competition takes9°'N9 fré)? E)ne reglme to the c;'[:]ei means that around the

place around the peak. We will thus concentrate on this reP€ak ™ (K,t) prevails overC{;™(k,t) long enough not
only to go past the linear region, but also to leave behind the

gion.
Figures 3 and 4 show that immediately after the end of théntermediate time intervalt(,t;) where the dynamics is
early regime, at the time;, coarsening begins with power nonlinear with the self-consistency relation in E9) satu-
law behaviors fok,~t¥* andC(k,t)~t¥2 However, af- rated to a good extent @ (k,t) alone. As a result, non-
ter some time, both these quantities display a pronouncelihear mean field behavior shows up around the peak.

F(x)~e a0~ 1? (40)

200.0
A
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' JE o7 FIG. 6. Effective exponent(x,t) for short
K \A A ) times in the BH model withd=2, N=10%, A
' t - _ .
= k) satfia, | ! A N =108, and Te=0. The different curves are
2 | ! & --012 . . .
° 2\&,2*5 esesan ﬁx‘[ 4 SV es /"\jﬁfmss PR benen computed for subsequent nonoverlapping time in-
ae By i 1 B X 8 g - . . .
' R U L W] gy tervals of duration exponentially growing. The

same applies to all other plots of the multiscaling
spectrum.
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The picture of the overall evolution is completed by the(A=1) and 1N(N=1C°) smaller. The immediate conse-
behavior of the effective exponent(x,t). In Fig. 6, refer- quences should then be the total absence of a linear regime
ring to times within the early stage, the mechanism of breakand aeconsiderable extensiop of the time interval where
down of the linear approximation described above is clearlyC(E(k,t) prevails overCE™(k,t). It turns out that in this
displayed. For all the curves, except the last one, there argase it is not crucial to have extremely precise data, so we
two qualitatively different behaviors fox>x(t) and x  present results fod=3. Inspection of the evolution of the
<X(1), with X(t) decreasing with time. For<X(t) the ef-  SrUCre f?"to(':u'\g- Szjrteh"eaf 2 diferent morphology from
fective exponenix(x,t) is well described by the linear ap- € case of smah and the absence ol Ine inear behavior o

L . A . . the peak is quite evident. Furthermore, the behavior of the
proximation(39), while for x>x(t) it is essentially fla}t. This tails is less dramatic and a power law appears only at the
corresponds to the onset of the power law to the right of thg, yet times for large values of the wave vector. More pre-
peak in the structure factor in Fig. 2. The retarded appPealgisely looking at the time dependencekqf(t) andC(k,,,t)
ance of the other power law tail to the left of the peak cor- Figs. 3 and 4, we can recognize an early regimrg which
responds to the deviation frqm the Iinegr formadfx,t) for . lasts up to a time very close tg, followed by a second
smallx in the last curve of Fig. 6. The timings of the devia- \oqime characterized by power laws. The features of the
tions from linear behavior at the different values>oére a early regime can be explained from the behavior of
consequence c_)f the sha(ﬁg) of the effectl_ve exponent. The CEM(R 1) for short ime. Namely, the exponential in the
breakdown of linear behavior shows up first at laxgavhere OI A f the | d |2 Y, K dp
a(x,t) is large andnegative and later on around=0, Selution of the largeN model(24) is peaked at
wherea(x,t), although small, is positive.

Next the behavior ofa(x,t) over the subsequent time ftdt’R(t’)
history in Fig. 7 shows the formation of very pronounced ) 0
peaks to the right and to the left & 1. These are due to the km=— 2t ' (41)

very fast growth of the power law tails in the early stage, as
is evident from the spacing of the curves in Fig. 2. In this
time regime the peak is the slowest growing mode in the
system. The multiscaling behavior aroume-1, which is
produced by the mean field behavior of the peak in the in-
termediate time regime, should be noted. Later on the curves 10° |
for a(x,t) flatten and collapse around the constant value
a(X)=2. The disappearance of the time dependence from
a(x,t) reflects the onset of standard scaling in the late stage.
It should be noted, however, that the approach to asymptotic o |
scaling is quite a slow process since a small upward curva-
ture of a(x) persists for a very long time. This curvature was
observed in early measurementsadix) in a variety of sys-
tems and was correctly interpreted as evidence that the large 3
time behavior, although not yet fully asymptotic, was defi- "
nitely approaching the standard scaling beha{/&3].

As a test of the above analysis let us consider the ex- FIG. 8. Structure factor in the BH model wiith=3, N=10?,
pected behavior upon making the initial fluctuations largeA=1, andT=0.
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For very smallt one hasR(t')=r+gS0) and therefore that prevails and not just around the peak but for all values
krzn [r+9gS(0)]/2. Since in the case considered Xx<x*. Thisis an intermediate scaling regime, characterized
+9g5(0)>0, we havek?<0. This means that for very short by mean field behavior over an extended range of wave vec-

times C(k,t) is monotonically decreasing and the maximumtors. Eventually, there must be the crossover to the

is atk=0. During this short time intervahot shown in our ~asymptotic regime with standard scaling over all length

plots) k1= andC(k,,t)=A. As time proceedsS(t) gets scales. This occurs for times larger than those considered in
m ' "

smaller andftdt'R(t") rapidly becomes negative whilg, ~ ©ur computation.
becomes positive and starts growing. This time interval cor-
responds to the decreasing behaviorkgf(t) in Fig. 3 for

In(t)<0. Therefore, in the early regime the right-hand side _ ! i '
of Eq. (29) is dominated by the contributioB (K, t) on the right-hand side of E§29). Without going to the most
Lat.er on coarsening bedins with owe? Iawé t;oth forgeneral case, for our purposes it is sufficiently illustrative to
g beg b considerTe>1/N. In this case, we expect to find, after the

B. T>0
With a finite final temperature all three terms are present

kn(t) andC(k.,,t). The behavior of the effective exponent
in Fig. 9 shows scaling since(x,t) becomes time indepen-
dent. The shape of(x) obeys quite well the mean field
multiscaling form(21) for x<x* and the standard scaling

form a(x)=d=3 for x>x*. Namely, in the region where
ao(x) is negativeC™(k,t) dominates, while in the region
where ag(X) is positive, even thouglda(x) =d— ay(x) is

also positive, due to the large value af it is CEH(K,t)

early stage, a fairly long intermediate regime characterized
by the finite temperature mean field behavior discussed in
Sec. Il. The eventual asymptotic regime lies beyond the time
interval considered in the computation. In the opposite limit
Te<<1/N, the intermediate regime is expected to be very
similar to the one analyzed above witlz =0.
Choosingd=3, N=10°, andT=10"3, let us first con-

sider the behavior of the effective exponer(ix,t) whenA
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=0. In this case an early linear regime is expected. This igllowed us to pursue the time evolution any further. How-

demonstrated by the set of the first few curves in Fig. 10
which follows closely the behavior of E§A15) in the Ap-
pendix. In particular, the signature of linear behavior with
finite temperature is given by the relaxationag(x,t) to zero
for x>x*, which corresponds to the fast relaxatit¥B) to

the time independent value @(k,t) for k>k,. After the

early stage, Fig. 10 displays the onset of the multiscaling

regime with a shape aof(x) well represented byr{(x) in
Eqg. (19). Hence, with this choice of the parameters, in the
intermediate regim@(TBFH)(IZ,t) dominates the right-hand
side of Eq.(29), yielding finite temperature mean field be-
havior. Changing the size of the initial fluctuations to the
large valueA=1 (Fig. 11), in the intermediate regime we

find a different multiscaling behavior. Far<x*, a(Xx) is
well represented by ag(X)=3¢(x), while for x
>x*, a(x)=2, suggesting that in this regiom(x)

= a1(x). Hence we find a behavior of the type described in
the discussion of the largd-model in Sec. Il. Namely, the
first two terms dominate the third one in E§9) and among

them C{P(k,t) dominates forx<x*, while CE™ (k1)
dominates forx>x*. The limitation of CPU time has not

Gk

10

107

FIG. 12. Structure factor in the CHC model with=3, A
=8.3x10 8, andT=0.

gver, on the basis of Eq29) we expect that there will be a
second preasymptotic regime with{®"(k,t) dominating
also forx<x* and producing the multiscaling behavior with
a(X)=at(x) for all x, before standard scaling with(x)
=3 is eventually established.

IV. SCALAR CAHN-HILLIARD-COOK MODEL

In this section we analyze the overall time evolution of
the structure factor for the ordering dynamics of the scalar
CHC. The main point is that the dependence of the preas-
ymptotic behavior on the parameters of the queAdndT¢
follows patterns very similar to those just described in the
BH model.

We consider first the zero-temperature quench ofdhe
=3 system with small initial fluctuationd =8.3x10 8,
Apart from quantitative aspects to be specified below, it is
evident from the inspection of Fig. 12 that the basic elements
in the evolution of the structure factor are the same as in the
analogous plot of Fig. 2 for the BH model. Here too there is
an early regime characterized by linear behavior of the peak
and rapid growth of power laws on the tails. The early re-

T
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FIG. 13. Time evolution of the inverse peak position of the
structure factor in the CHC model witth=3.
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FIG. 14. Time evolution of the height of the structure factor FIG. 15. Scaled structure factor of Fig. 12.

peak in the CHC model witkd= 3.

time evolution in the CHC and BH models with the same
gime is abruptly followed by the onset of coarsening, which,quench parameters. The difference in the space dimensional-
as in the BH model, displays an intermediate regime delimity is inessential. There are instead important quantitative
ited by an anomaly in the position and the height of the peaklifferences, as mentioned above, in various features of the
before the eventual late stage is entered. It is then interestirgjructure factor. Thus, fok—0 the scalar system hask&
to see if, as in the BH model, this intermediate regime can beail, while in the BH model one finds tHe tail. On the other
associated with the manifestation of nonlinear mean fielthand, for largek, Porod’s tailk (91 of the scalar case is
behavior. Actually, that it is so can be established in an evemeplaced by the exponential decay in the BH model and the
more clear-cut way than in the BH model. In fact, the mearanalytical form of the structure factor is manifestly different
field growth exponent ig=4, while in the scalar systern  around the peak in the two models. These differences show
=3. These are precisely the values we find friogft) (Fig.  that certainly the BH model cannot be used for an accurate
13), which gives 12=0.250=0.003 in the intermediate re- computation of the scaling function in a scalar system, but
gime and 1Z=0.321+0.005 in the late stage. Fro@(k,,,t) are immaterial when considering the gross features of the
in Fig. 14 we find consistentlg/z=0.730+0.002 in the in-  overall time evolution, as we are doing here. Thus we have
termediate regime, while no clear power law can be extractednough evidence to establish the sequence early linear—
from the data of the late stage. The existence of the meaimtermediate mean field—fully nonlinear late stage combined
field scaling regime around the peak in the intermediate rewith the dependence of the crossover time on the wave vec-
gime is also demonstrated by the data collapse in Fig. 18or, much in the same way as we have found in the BH
The fit to the form(40) of the scaling function works well for model. We can go one step further and regard this phenom-
preasymptotic scaling, as in Fig. 5, while it is inadequate forenology, in analogy with the BH model, as the manifestation
the asymptotic behavior. Finally, the comparison of the be-of the competition among different components in the struc-
havior of the effective exponent(x,t) in Figs. 16 and 7 ture factor. If so, the phenomenology should respond to the
completes the evidence for the close similarity in the overallvariation of the parameters of the quench with patterns simi-
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10° ‘ - not significantly different from the one illustrated abdgee
Figs. 13 and 1x

V. CONCLUSIONS

In this paper we have studied the global evolution of the
structure factor from the very beginning of the quench down
to the fully developed late stage in a system with a conserved
order parameter. By making a comparative study of the BH
and CHC models under variation of the parameters of the
guenchA and Tr we have been able to identify generic
features in the preasymptotic behavior. Prominent among
these aréi) the wave vector dependence of the time duration
of the early and intermediate regimes di¢ the mean field
character of the preasymptotic behavior. These properties are
tightly linked together. The existence of a mean field regime
requires, in fact, multiscaling behavior, which in turn implies
a wave vector dependence of the crossover time. On the
lar to those already observed in the BH model. As a matter ofvhole, the complex phenomenology of the preasymptotic be-
fact, takingA =1, the overall behavior of the structure factor havior can be accounted for in a fairly simple manner
changes from that of Fig. 12 to the one in Fig. 17, closelythrough the competition of different contributions as exem-
reproducing the change in morphology observed betweeplified in the structure of Eg(29). While for the BH model
Figs. 2 and 8. The same observation applies to the behaviothis is a direct consequence of the form of the equation of
of k, andC(kp,,t). Comparing Figs. 13 and 14 with Figs. 3 motion, the applicability of Eq(29) to the evolution of the
and 4, the similarity is very close and it is definitely estab-CHC model is a nontrivial result. It should be noted that the
lished upon comparing Fig. 18 with Fig. 9 for the effective preasymptotic phenomenology presented above is, in prin-
exponenta(x,t). Therefore, by making\ large a consider- ciple, experimentally observable and it would be interesting
able extension of the intermediate regime is observed, as ito perform a multiscaling analysis of early time experimental
the BH model, and the manifestation of the mean field bedata in order to look for the crossover from mean field to
havior takes place in the same way, wiiix)=a(x) for  truly asymptotic behavior.

Xx<x* anda(x)=d=3 for x>x*. On the basis of the results produced, the BH model quali-

In the scalar case, however, a less rich variety of preasfies for a reference theory of phase-ordering kinetics that
ymptotic behaviors can be obtained by varying the parameaptures most of the qualitative ingredients entering the phe-
eters of the quench, due to much more rigidity in the modelpnomenology of the process. In other words, the model can be
in the sense thall=1 does not allow for the modulation at used as the starting point for theoretical work aimed at an
will of the strength of the nonlinear term, which is always improvement of the approximation in order to have a better
large. In particular, because of the upper bolire T, itis  performance in the computation of asymptotic properties
not possible to realize the conditions for the temperaturesuch as the shape of the scaling function. In closing, it should
term to be overwhelmingly larger than the nonlinear term.be mentioned that the structure of the overall time evolution
For this reason the phenomenology observed Wigh-0 is  analyzed in this paper is by no means limited to the case of

Gk
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FIG. 17. Structure factor in the CHC model with=3, A
=2.083, andT=0.
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a conserved order parameter. The crossover from mean field/ k,(t). For k>k,(t) the argument of the exponential in
to asymptotic behavior is expected to be a relevant feature dq. (10) is large and positive, yielding the fori@3), while
the preasymptotic regime also when the order parameter isis small fork<k;(t) and the structure factor takes the form
not conserved. However, in the latter case it is much morgA2). Notice thatk,(t) is proportional tot~¥* for smallt.
delicate to detect than in the former. With a conserved order Later on, fort>t,, the wave vector axis is divided into
parameter the crossover is made evident by the change in tiieur intervals by ki (t)>ky(t)>k3(t)>0. For k>k,(t),
growth exponent fronz=4 to z=3 and most of all by the c(k t) still has the form(A3). In the rangeks(t)<k
spectacular change from multiscaling to standard scaling,(t), the structure factor takes the fora1). In the two
These elements of discrimination are absent in the nonconsiher intervalgd k< ks(t) andky(t) <k<k(t)] it maintains
served case since the crossover does not involve any changg, form (A2). The values oks(t) andk(t) coincide fort

in the valuez=2 of the growth exponent and §caling is —t,, while they go asymptotically to zero anf-r, respec-
standard in both the mean field and asymptotic regimes;yely, for large times.

Work in this direction is in progress. Using Egs.(A1)—(A3) and (35), the form of a(xt) is
readily computed. For a structure factor obeying E3)
APPENDIX and for largex one finds

In this appendix we compute the form of the effective

exponenta(x,t) during the linear regime for finite quench = 2InLy(t) (A7)
temperature and vanishing initial fluctuations. Whis>0 a(X,t)= InLq(t)
andA =0 the structure factal0) takes three possible forms
depending on the range of the wave vectors considered. If
2k2(K2+T1)t<—1, When Eq.(A2) holds one has
1 In[t/£3(1)]
C(k,t)=— exy — 2k2(k?+r)t]. Al -~z
(k,t) e o] ( )] (A1) a(x,t InCa(t) (A8)
2(1c2 >
It [2k*(k*+ )] <1, and finally, when Eq(A1l) is valid, neglecting logarithmic
corrections and definingy=+/—r/2 one finds
C(k,t)=2k2t. (A2) o
4
If 2K2(k2+1)t>1, 2kt
(X0 = o 0. (A9)
Ck,t)=—. A3 . .
(k1) k2+r (A3 Notice that only in the latter case doegx,t) actually de-
pend onx.
The boundaries between such ranges are fixed by the condi- In order to fully determinex(x,t) the explicit time depen-
tions dence of the scaling length; (t) =L (k,L)24~ 1 and £,(t)
=k, is needed and this requires the determination of the
2k2(k2+r)t=1, 2kA(k%+r)t=—1. (A4)  time dependence of the peak positigp during the two lin-
ear regimes. One can easily see that fefty,, k,, de-
The first has only one real positive solution creases as -, while for Ic_)nger timeg>t, it reaches the
constant valuek,,=k,. Using these expressions we then
have fort<t,
—r+ _[r?+2#k
k()= Y ——— (A5) Lit)=t"  L(t)=t" (A10)

2

. - ) while for t>tg,
for all times. The second has two real positive solutions

_+l/4 _ _ 1 —131/6 —
B Ny Li=t" (d=2), Li(t)=k,"t" (d 3)(,A11)

k()= N ———— k(= >

(AG) L,(t)=kqy '=const. (A12)
but only fort>2/r2,

Hence two distinct linear regimes can be identified, de-We are finally able to write down the form of the effective
pending on whether the time is greater or smaller than exponent in the linear regime with finite final temperature.
=2/r2. Fort<t, thek>0 axis is divided into two intervals For t<t,
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x<<xq () =k/Kq (1)

aO=15 xexy (1), (A13)
Fort>ty, andd=2,
In (k3t)
T, X<X2(t)=k/k2(t)
8kgt
Wlﬂ(x)y Xa(1) <x<X3(t)=k/K3(1)
t)=
D=0 e
Nt X3(1) <X<X4(1)
8In(ky b
Tt X>X,q(1),
(A14)
while for d=3,
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In(k3t)
In(kg 2t)’ xExa(t)

! g I)<<x<< t
in(ka21) (X)), Xo(t)<x<X3(t)
a(x,t)= (20 (A15)
m, x(t)<x<x4(t)

12In(kg )
In(kgzt) . X>X(1).

The most relevant feature of these expressions isdfaft)
vanishes for largex as time grows, as opposed to the case
with A=0, where the spectrum predicted by linear theory
becomes very large and negative for \/2 as time grows.
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