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Overall time evolution in phase-ordering kinetics
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The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics
of a system with a conserved order parameter is investigated in the Bray-Humayun model@Phys. Rev. Lett.68,
1559 ~1992!# and in the Cahn-Hilliard-Cook model@J. Chem. Phys.28, 258 ~1958!; Acta Metall. 18, 297
~1970!#. From the comparison of the structure factor in the two models the generic pattern of the overall time
evolution, based on the sequence ‘‘early linear–intermediate mean field–late asymptotic regime’’ is extracted.
It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the
parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature.
The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in
a simple way through the structure of the solution of the Bray-Humayun model.@S1063-651X~98!10310-0#

PACS number~s!: 64.60.Ak, 05.70.Fh, 64.60.My, 64.75.1g
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I. INTRODUCTION

Phase-ordering kinetics is very much an open problem
nonequilibrium statistical physics. Its quite simple formu
tion is in striking contrast with the difficulties encountered
its study, due to the strong nonlinear nature of the probl
During the past two decades much attention has been
voted to this field and much progress has been made in
understanding of what goes on after a quench inside the
stable region of the phase diagram@1#. In particular, the late
stage of the evolution has been studied with great care, l
ing to a detailed knowledge of the scale invariant asympt
time regime. Despite this progress, however, most res
recently obtained are still based on uncontrolledad hocap-
proximations relying on the unproven dynamical scaling h
pothesis, while a systematic theory allowing for the deriv
tion of late stage properties from first principles is still far o
@2#.

Leaving aside this difficult problem, in this paper w
mainly focus on what happens before the scaling regim
entered, aiming at a comprehensive description of the ove
time evolution in a system with a scalar conserved or
parameter. Specifically, we will consider the Cahn-Hilliar
Cook ~CHC! model @3,4# or model B in the classification o
Hohenberg and Halperin@5#. The study of the preasymptoti
regime@6,7# has been hitherto somewhat neglected beca
of the absence of scaling and universality. This feature,
the one hand, makes the understanding of the preasympt
less urgent and, on the other, makes it a more difficult s
ject to study than the late stage. As a result, all that we h
in terms of early stage theory essentially boils down to
linear approximation@3#. Nevertheless, it seems clear that
understanding of the complex phenomena taking place in
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transition from the preasymptotic to the asymptotic regime
an important preliminary step in the development of a f
theory of phase-ordering kinetics@7,8#. In this respect, the
effort undertaken in the past few years@9,10# to make an
assessment of the relevance of the large-N model@11# in the
theory of phase-ordering kinetics has turned out to be q
productive. Summarizing briefly, the large-N model is the
only exactly soluble model presently available for pha
ordering kinetics with a conserved order parameter. T
asymptotic behavior of the exact solution for the structu
factor in this model displays multiscaling@9# in place of the
standard scaling usually observed in experiments and si
lations. Then the question was raised whether multiscalin
the true asymptotic behavior in all cases. The issue w
settled by Bray and Humayun by introducing@12,13# a more
general model that contains the large-N model as a particular
case and displays standard scaling in the asymptotic reg
for all finite values ofN, whereN is the number of order
parameter components. From this result it follows that m
tiscaling as an asymptotic property holds only ifN is strictly
infinite, while for finiteN at most it may be observable as
preasymptotic feature.

Continuing this line of reasoning, in this paper we car
out a detailed analysis of the Bray-Humayun~BH! model,
arriving at a fairly complete picture of the mechanism reg
lating the structure of the preasymptotic behavior and, m
importantly, we find that it applies also to the CHC mod
The main result then is that what appears to be the gen
pattern in the overall time evolution is based on the seque
‘‘early linear–intermediate nonlinear large-N ~or mean
field!–asymptotic fully nonlinear behavior’’combinedwith a
strong dependence of the time scales of these regimes o
length scale. To be more specific, in wave vector space
identify three regions characterized by greatly different d
rations of the preasymptotic regimes and, furthermore, th
durations can be modulated by the choice of the parame
of the quench. The three regions are the one around the
5410 © 1998 The American Physical Society



le
ri
m
h
th

c
w
h

III
C

on
re

or

,

l-
tu

e-
a
tu
ic

e

de

be
ial

u-
s-

is
is

ith
e-

ruc-
n
led

of

ta-
olu-
of

oth
ale

e
-
that
fore
till

an
eli-
udy

b-

PRE 58 5411OVERALL TIME EVOLUTION IN PHASE-ORDERING KINETICS
of the structure factor and the two to the right and to the
of the peak. The concurrence of all these elements gives
to a rich variety of behaviors in the preasymptotic pheno
enology, which can be nicely sorted out analytically on t
basis of the equation for the BH model, but holds true for
full CHC model as well.

The paper is organized as follows. In Sec. II we introdu
the model and after defining the observables of interest,
discuss the linear, mean field, and BH approximations. T
numerical solution of the BH model is analyzed in Sec.
The corresponding analysis of the simulation of the CH
model is presented in Sec. IV. Finally, Sec. V contains c
cluding remarks. A partial preliminary account of these
sults was published previously@14#.

II. MODEL

We consider a system described by anN-component order
parameter that evolves according to the CHC equation f
conserved order parameter,

]fW ~xW ,t !

]t
5¹2F ]V~fW !

]fW
2¹2fW G1hW ~xW ,t !, ~1!

whereV(fW )5(r /2)fW 21(g/4N)(fW 2)2, with r ,0 andg.0,
is the ‘‘sombrero’’ potential andhW is a Gaussian white noise
with expectations

^hW ~xW ,t !&50,

^ha~xW ,t !hb~xW8,t8!&522TFdab¹2d~xW2xW8!d~ t2t8!.
~2!

Here TF is the final temperature of the quench. In the fo
lowing we shall consider processes with a high-tempera
uncorrelated initial state

^fW ~xW ,0!&50,

^fa~xW ,0!fb~xW8,0!&5Ddabd~xW2xW8!, ~3!

whereD is the size of the initial fluctuations. In the subs
quent time development the average order parameter rem
zero and the observable of interest is the equal time struc
factor C(kW ,t) given by the Fourier transform of the gener
component of the correlation function^fa(xW ,t)fa(xW8,t)&.

If the final temperature is below the critical point w
know that the structure factor evolves from the initial form

C~kW ,0!5D ~4!

towards the equilibrium form

lim
t→`

C~kW ,t !5M2~TF!d~kW !1CTF

~eq!~kW !, ~5!

where the first term is the Bragg peak associated with or
ing, with an equilibrium valueM (TF) for the order param-
ft
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eter in the broken symmetry phase, andCTF

(eq)(kW ) is the con-

tribution of thermal fluctuations. The problem is to descri
how this form of the structure factor evolves out of the init
form ~4!. The parameters of the quench areD andTF .

The physical picture arising from experiments and sim
lations is clear: After a certain initial transient, order is e
tablished over domains of sizeL(t) and within domains ther-
mal fluctuations have relaxed to equilibrium. Once th
arrangement is achieved, memory of the initial condition
lost and the subsequent time evolution~late stage! is essen-
tially limited to the coarsening of the ordered domains w
thermal fluctuations enslaved in the equilibrium form. Ph
nomenological arguments@1# tell how the size of domains
grows in timeL(t)5km

21(t);t1/z, wherekm(t) is the peak
wave vector of the structure factor andz53 or z54 in the
scalar or vectorial case, respectively. At this stage, the st
ture factor can be split@2# into an ordering and a fluctuatio
component, which are, to a good approximation, decoup

C~kW ,t !5Cord~kW ,t !1CTF
~kW ,t !. ~6!

The ordering component scales with respect to the size
domains

Cord~kW ,t !5M2~TF!La~x!F~x! ~7!

with a5d, the space dimensionality of the system, andx
5kL(t). The above scaling form is a finite size represen
tion of the Bragg peak and reveals that the late stage ev
tion is a critical phenomenon characterized by the pair
exponents (a,z). The final temperatureTF enters only in the
prefactorM2(TF) and the exponents are independent of b
D andTF . In this sense the late stage is universal and sc
invariant, with an attractive fixed point atTF50. Most of the
recent theoretical work@1,15# has been concentrated on th
study of the scaling functionF(x), obtaining successful re
sults through approximations based on the assumption
scaling holds. Much less is known about the process be
the late stage is entered, when the time evolution is s
sensitive to the actual values of the parameters (D,TF), the
scaling form~7! does not yet hold, and the separation into
ordering and a fluctuation component is a much more d
cate issue. In the following we address the theoretical st
of the preasymptotic behavior.

A. Linear theory

The traditional early stage theory is the linear theory o
tained by settingg50 in Eq.~1!. It is then straightforward to
compute the structure factor

C~kW ,t !5DC0
~ l !~kW ,t !1TFCTF

~ l !~kW ,t !, ~8!

where

C0
~ l !~kW ,t !5exp@22k2~k21r !t# ~9!

and
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CTF

~ l !~kW ,t !5
1

k21r
$12exp@22k2~k21r !t#%. ~10!

The distinctive features of linear behavior are~i! exponential
growth for k,k0[A2r @in particular the peak wave vecto
of the structure factor remains at a constant valuekm

5k0 /A2 ~except for very short times whenTF.0; see the
Appendix!# and

C~kWm ,t !;exp2km
4 t, ~11!

~ii ! at k5k0

C~kW0 ,t !5H D for TF50

2TFk0
2t for TF.0,

~12!

and ~iii ! for k.k0 the structure factor relaxes exponentia
to

C~kW !5H 0 for TF50

TF /~k21r ! for TF.0.
~13!

This approximation is useful to describe what happens in
very early stage, when the requirement for the linear appr
mation to hold is met, namely, when the size of the nonlin
term in Eq.~1! is small with respect to the linear one. For th
initial condition this implies thatD!M0

252r /g ~small D),
whereM0 is the equilibrium value of the order parameter
zero temperature, at the bottom of the sombrero poten
Conversely, ifD.M0

2 ~largeD), the linear theory does neve
apply. However, even when it applies at the beginning
some point this approximation is bound to break down due
the exponential growth fork,k0 . Furthermore, the form~8!
does not describe coarsening since the peak value of
wave vector remains constant in time and the scaling fo
~7! never applies. In short, the linear early stage theory d
not connect to the late stage theory. This is true also to
finite order ing. Therefore, any approximation aiming at
global description of the phase-ordering process must ne
sarily involve some form of infinite resummation of the e
pansion in powers ofg.

B. Large-N model

In analogy with the theory of critical phenomena, o
may explore the 1/N expansion as a method to organize
finite partial resummations. To lowest order~large-N model!,
one obtains from Eq.~1! the equation for the structure facto

]C~kW ,t !

]t
522k2@k21R~ t !#C~kW ,t !12k2TF , ~14!

with

R~ t !5r 1gS~ t ! ~15!

and
e
i-
r

t
l.
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S~ t !5E ddk

~2p!d C~kW ,t !. ~16!

This equation can be solved analytically@9#, yielding the full
time evolution from the initial condition~4! to the final equi-
librium form ~5!. However, the time development ofC(kW ,t)
obtained in the late stage of this model differs in seve
respects from the expected behavior~6! and~7!. First of all,
the contribution of the structure factor associated with
buildup of the Bragg peak takes the multiscaling form

C~kW ,t !;@L~kmL !2/d21#a~x!F~x!, ~17!

whereL(t)5t1/4, km(t) is the peak wave vector related t
L(t) by

~kmL !45d ln L1~22d!ln~kmL !, ~18!

and x5k/km(t). Then the exponenta(x) and the scaling
function F(x) take different forms for the quenches to fini
temperature with 0,TF,Tc and for TF50. In the former
case

a~x!5aT~x![H 21~d22!c~x!, x,x*

2, x.x*
~19!

and

F~x!5
TF

x2 , ~20!

with x* 5A2 andc(x)512(12x2)2, while in the latter

a~x!5a0~x![dc~x! ~21!

and

F~x!51. ~22!

This result shows that the infinite resummation involved
the lowest order of the 1/N expansion, although producin
equilibration and formation of the Bragg peak, does so i
qualitatively different way from what is expected in the fu
CHC theory since~i! the finite size representation~17! of the
Bragg peak displays multiscaling in place of the stand
form of scaling~7! and ~ii ! the fixed point structure regulat
ing the asymptotic scaling properties is different as the sp
trum of exponents and the scaling function are no lon
independent of the final value of the temperature. AtTF
50, in place of an attractive fixed point, there is an isola
fixed point. Then there is a line of fixed points for 0,TF
,Tc ~all sharing the same asymptotic properties! and, fi-
nally, there is yet another isolated fixed point atTc . It has
now been clarified@10# that the formation of the Bragg pea
in the large-N model is associated with a condensation p
cess rather than to the phase-ordering process. Why
ought to induce multiscaling is not clear. In any case, t
seems to say that the type of resummation involved in
large-N model is not enough to produce phase ordering
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PRE 58 5413OVERALL TIME EVOLUTION IN PHASE-ORDERING KINETICS
can phase ordering be recovered by perturbation the
about theN5` limit. In the following we shall refer to the
behavior described above as mean field behavior.

In order to expose some features of the solution that
relevant also beyond mean field theory, it is convenien
consider the integral form of Eq.~14!,

C~kW ,t !5DC0
~m f!~kW ,t !1TFCTF

~m f!~kW ,t !, ~23!

which yields the structure factor as the sum of two contrib
tions

C0
~m f!~kW ,t !5expH 22k2E

0

t

dt8@k21R~ t8!#J , ~24!

CTF

~m f!~kW ,t !52k2E
0

t

dt8
C0

~m f!~kW ,t !

C0
~m f!~kW ,t8!

~25!

coupled together through the self-consistency relation
quired by the definition ofR(t) in Eqs. ~15! and ~16!. If
TF50 obviously onlyC0

(m f)(kW ,t) enters the self-consistenc
relation and this yields the asymptotic multiscaling behav
characterized bya0(x). Instead, ifTFÞ0, both terms on the
right-hand side of Eq.~23! participate in the self-consistenc
relation. EventuallyCTF

(m f)(kW ,t) prevails and the asymptoti

multiscaling behavior~17! with aT(x) is obtained. However
before reaching this regime, there may exist a time inter
where the two terms do compete. This clearly depends on
relative magnitude ofD and TF . Less obvious is that it
should depend also on the length scale and that there sh
therefore be a wave-vector-dependent crossover timet* (k).
In order to understand how this comes about, a glance at
1 is sufficient. The exponenta(x) is related to the rate
of growth of the structure factor at some length sca
Roughly,a0(x) andaT(x) indicate how fastC0

(m f)(kW ,t) and

CTF

(m f)(kW ,t), respectively, grow at the different wave vecto

as time goes on. Figure 1 shows thataT(x).a0(x) every-
where, except atx51, wherea0(1)5aT(1)5d. Hence, if
D/TF is sufficiently large for the behavior ofC0

(m f)(kW ,t) to be

FIG. 1. Spectrum of multiscaling exponents in the largeN
model withd53, TF50 @a0(x)#, andTF.0 @aT(x)#.
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observable at the beginning of the quench, this will yield
the true asymptotic behavior ofCTF

(m f)(kW ,t) first where the

difference

da~x!5aT~x!2a0~x! ~26!

is the largest and then gradually the crossover fr
C0

(m f)(kW ,t) to CTF

(m f)(kW ,t) will propagate in time to the length

scales whereda(x) is smaller. Therefore,da(x) is the key
quantity that controls the wave vector dependence oft* (k).
In the case at hand, the crossover will take place very fas
large values ofx and will then propagate towardsx* from
above. When it takes place aroundx* it occurs also for small
values ofx, eventually propagating towardsx51 from both
the right and the left. Thus the peak of the structure facto
the wave vector region where the crossover time is the lo
est. The rich variety of behaviors generated by Eq.~23! asD
and TF are varied has been studied in great detail in R
@10#.

C. Bray-Humayun model

A significant improvement over the large-N model is ob-
tained in the BH model. By combining the Gaussian aux
iary field approximation of Mazenko@16# with the 1/N ex-
pansion, a nonlinear closed equation for the structure fa
is derived@12#

]C~kW ,t !

]t
522k2@k21R~ t !#C~kW ,t !22

k2

N
R~ t !D~kW ,t !

12k2TF , ~27!

with

D~kW ,t !5E ddk1

~2p!dE ddk2

~2p!dC~kW2kW1 ,t !C~kW12kW2 ,t !C~kW2 ,t !

~28!

andR(t) defined by Eqs.~15! and ~16!. Even if the large-N
model is contained in Eq.~27! as a particular case recovere
in the limit N→`, it is not possible to pinpoint the correc
tion made, due to the uncontrolled character of the appro
mation involved in the Gaussian auxiliary field method@15#.
Nor is it clear how to proceed, at least in principle, in ord
to improve upon Eq.~27!. In any case, the merit of the BH
equation is that in the late stage standard scaling is recov
for any finite value ofN. This means that whatever corre
tion is contained in the BH model, it is enough to descri
phase ordering rather than the condensation process ap
ing in the large-N model. Therefore, the BH equation may b
regarded as the self-contained definition of a basic mode
phase-ordering kinetics. Even though the model does no
low for a complete explicit solution, the structure of the fo
mal solution in conjunction with numerical analysis allow
us to follow in great detail the overall time development a
to uncover how the asymptotic scaling behavior gradua
arises from the nonuniversal preasymptotic behavior.

Going over to the integral form of Eq.~27!, we find the
generalization of Eq.~23!,
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C~kW ,t !5DC0
~BH!~kW ,t !1TFCTF

~BH!~kW ,t !1
1

N
Cnl

~BH!~kW ,t !,

~29!

with

C0
~BH!~kW ,t !5expH 22k2E

0

t

dt8@k21R~ t8!#J , ~30!

CTF

~BH!~kW ,t !52k2E
0

t

dt8
C0

~BH!~kW ,t !

C0
~BH!~kW ,t8!

, ~31!

Cnl
~BH!~kW ,t !522k2E

0

t

dt8
C0

~BH!~kW ,t !

C0
~BH!~kW ,t8!

R~ t8!D~kW ,t8!,

~32!

where again the self-consistency is implemented through
definition ofR(t). In general this is a very complicated no
linear integral equation that must be handled numerically.
the other hand, considerations of the type made about
~23! may be extended to the present case and simplificat
may be expected if the conditions for one of the terms on
right-hand side to prevail over the others are realized. Firs
all, the nonuniversal features dependent on the paramete
the quench (D, TF) are associated with the first two term
while the asymptotic behavior is due to the third one. Tak
only this last term into account, Bray and Humayun ha
been able to extract the scaling behavior that obeys the s
dard form~7! with

F~x!;H x2 for x!1

e2c1~x221!2ln N for x.1

e2c2x for x@1,

~33!

where c1 and c2 are constants. The exponential decay
large x has been obtained numerically@17# and confirmed
analytically @18#, while the other two results are analytic
@12,19#. Before the asymptotics are reached, the behavio
the structure factor is the result of the interplay of all t
terms on the right-hand side of Eq.~29!. If there exists a time
interval where the first two terms actually dominate over
third one, one may anticipate the occurrence of mean fi
behavior@12,13#. Furthermore, on the basis of the previo
discussion, one may also anticipate that this will be v
sensitive to the relative magnitude ofD,TF ,1/N and that
there will be a wave-vector-dependent crossover time.

D. Multiscaling analysis

In order to cover all possible behaviors it is quite useful
introduce the multiscaling analysis of the structure fact
Both the standard scaling~7! and the multiscaling~17! be-
haviors can be written in a unified general form as

C~kW ,t !5@L1~ t !#a~x!F~x!, ~34!
e

n
q.
ns
e

of
of

g
e
n-

r

of

e
ld

y

r.

with x5kL2(t) and whereL1(t) andL2(t) are two growing
lengths. As we shall see, the determination of the spect
of exponentsa(x) is quite informative. Numerically this is
done by consideringC(kW ,t) over subsequent and nonove
lapping time intervalst i . After taking the logarithm of Eq.
~34! one has

ln C@x/L2~ t !,t#5a~x,t !lnL1~ t !1 ln F~x! ~35!

anda(x,t) can be computed as the slope of lnC(kW ,t) versus
lnL1(t) for the different times in the intervalt i , with x fixed
andk5x/L2(t). In practice this amounts to the measureme
of an effective exponenta(x,t)5] ln C(k,t)/] lnL1(t) of
the type introduced in critical phenomena for the study
crossovers between competing critical behaviors. Here
time t is the parameter driving to criticality and scaling hol
when the effective exponent is independent oft. Standard
scaling corresponds toL1(t)5L2(t)5L(t)[t1/z and
a(x)5d, while multiscaling corresponds toL1(t)
5L(t)@km(t)L(t)#2/d21, L2(t)5km

21(t), and a(x) genu-
inely dependent onx.

From the structure factor other quantities can be co
puted numerically, giving insight into the preasymptotic b
havior. In the following we will consider the position of th
peakkm(t) and its heightC(km ,t). Their asymptotic behav-
iors are

km~ t !;t21/3, C~km ,t !;td/3 ~36!

for the CHC model, while in the large-N model from Eqs.
~17! and ~18! it follows that

km~ t !5S ln t

t D 1/4

, C~km ,t !5td/4~ ln t !~22d!/4d. ~37!

For future reference it is useful to apply the multiscali
analysis to the linear approximation. WhenTF50 and D
.0, from Eq.~9! one finds

ln C~xkm ,t !5
2km

4 t

ln@L~kmL !2/d21#
c~x!ln@L~kmL !2/d21#

1 ln D, ~38!

which gives the effective exponent

a~x,t !5
2km

4 t

ln@L~kmL !2/d21#
c~x!, ~39!

namely, the spectrum is of the multiscaling form~21! with a
prefactor linearly growing with time. This explicit time de
pendence shows the absence of scaling. ForD50 and TF
.0 the computation ofa(x,t) is slightly more complicated
and is reported in the Appendix.

E. Numerical solution

The numerical solution of the CHC equation~1! requires
a lot of computer resources. This is due to the need of rea
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ing long times, in order to study the asymptotic behavi
and of considering large systems, in order to avoid finite s
effects. The task of analyzing in detail the effective expon
a(x,t) makes things worse because it crucially depends o
very precise estimate of the structure factor. This involv
the use of very large systems and the average over m
realizations of the initial fluctuations and the thermal nois

Since no averaging over realizations is required, the Br
Humayun model has been solved by simple discretization
the equation of motion for the correlation function in re
space, which involves only Laplacians. The size of the s
tem has been chosen to be 10242 for d52 and 1603 for d
53.

For the scalar case we have resorted, instead, to the
dynamical system~CDS!, a cellular automaton that repro
duces accurately the solution of the CHC equation, wh
being computationally much more efficient@20#. We have
considered the version of the CDS algorithm withf (x)
5Atanh(x) and have taken the parametersA51.3 andD
50.5, so thatM (TF50)560.977 67. We have considere
lattices of size 5122 for d52 and 1283 for d53. In the initial
state we have considered a uniform distribution of the or
parameter between2b/2 andb/2 so thatD5b2/12. For each
value of the parametersD and TF the structure factor ha
been averaged over a suitable number of realizations.
values ofkm(t), C(km ,t), anda(x,t) have been obtained b
interpolating the spherically averaged value ofC(kW ,t) with a
cubic spline routine.

III. RESULTS FOR THE BH MODEL

In this section we present the multiscaling analysis of
structure factor in the BH model. As pointed out above,
the asymptotic regime scaling is of the standard type
long as 1/N is not zero because the nonlinear contributi
Cnl

(BH)(kW ,t) in Eq. ~29! is eventually the largest for all value
of x. Here we are mainly interested in the numerical study
the preasymptotic regime and in the identification of patte
due to the interplay of the three terms on the right-hand s
of Eq. ~29!.

FIG. 2. Structure factor in the BH model withd52, N5103,
D51028, andTF50. Different curves correspond to exponentia
growing times. The same applies to all other plots of the struc
factor.
,
e
t
a
s
ny
.
y-
of
l
-

ell

e

r

he

e

s

f
s
e

A. TF50

We start by considering the case of a quench to zero fi
temperature for a system withN5103 and D51028. The
overall evolution of the structure factor is rather complicat
and in order to sort out all the features entering it, very go
quality of data is needed. Therefore, we present the d
obtained ford52, which are much less noisy and are qua
tatively the same as those ford53, sinceTF50. With TF
50 the competition is reduced to the first and the third te
on the right-hand side of Eq.~29!. Following the reasoning
presented in Sec. II, this depends on the values ofD andN
and on the rates of growth of the two terms at the differ
wave vectors. Figure 2 is a double logarithmic plot of t
time evolution ofC(kW ,t) from the very beginning up to som
time inside the asymptotic regime. Basic features are
prompt appearance of power law tails on both sides of
peak and a more elaborate behavior of the peak. In particu
three sharp regimes are identified~early, intermediate, and
late stage!, which are clearly separated by almost abru
changes in the positionkm(t) and heightC(km ,t) of the peak
at timest1 andt2 ~see also Figs. 3 and 4!. In the early stage,
i.e., in the interval (0,t1), there is no coarsening andkm stays
constant in time with high accuracy~Fig. 3!, as predicted by
the linear approximation. That there should be a linear
gime could have been anticipated from the tiny value of
initial fluctuations and it is further confirmed by the behavi
of C(km ,t) in Fig. 4, which obeys well Eq.~11!. According
to the linear approximation~9!, on the sides of the peak ther
should be an exponential decay ink both to the right
C0

( l )(k,t);e22k4t and to the leftC0
( l )(k,t);e22k2rt . This

holds true immediately after the quench, but very soon~i.e.,
for t!t1), even if the peak stays in the same place,
exponential decays are replaced by power laws. These
obviously nonlinear effects. The competition betwe
C0

(BH)(kW ,t) andCnl
(BH)(kW ,t) leading to the breakdown of th

linear approximation follows a nontrivial pattern wit
Cnl

(BH)(kW ,t) taking over first at small and large wave vecto
and then closing towards the peak from both the right and
left. The propagation of the breakdown of the linear appro
mation from high to low wave vectors has already been d
covered and analyzed in detail in the nonconserved case@21#.
Here we find evidence that, through a different mechani

e

FIG. 3. Time evolution of the inverse peak position of the stru
ture factor in the BH model.
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this breakdown follows a yet richer pattern characterized
the bilateral convergence towards the peak.

Concerning the nature of the power laws, for small wa
vectors we findC(k,t);k2, implying that the asymptotic
behavior~33! is established almost from the start. For lar
wave vectors, instead, we findC(k,t);k2n with n;4. In-
terestingly, even though this nonlinear feature sets in e
before the appearance of thek2 power law for smallk, it is
very different from the exponential decay of Eq.~33! and it
lasts quite long before yielding to the formation of the tr
asymptotic behavior. This phenomenon is not related to
interplay of terms on the right-hand side of Eq.~29!. Rather,
it may be related to the formation in the early stage of u
stable localized topological defects. Such a phenomeno
present also in simulations of the CHC equation withn.d
and will be studied elsewhere@22#. In any case, the bottom
line is that on the tails there is practically no competiti
betweenC0

(BH)(kW ,t) and Cnl
(BH)(kW ,t), as the latter contribu-

tion soon prevails, while a long lasting competition tak
place around the peak. We will thus concentrate on this
gion.

Figures 3 and 4 show that immediately after the end of
early regime, at the timet1 , coarsening begins with powe
law behaviors forkm;t1/z andC(km ,t);td/z. However, af-
ter some time, both these quantities display a pronoun

FIG. 4. Time evolution of the height of the structure factor pe
in the BH model.
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anomaly localized aroundt2 whose origin seems to be puz
zling. This is especially true considering the behavior
km(t), which obeys the same power law very precisely, w
z54, before and after the anomaly~see Fig. 3!. For the peak
height, while the power law is well obeyed withd/z50.53
for t.t2 , the behavior in the intermediate regimet1,t,t2
cannot be easily fitted to a power law. The insight into wh
is going on is obtained by making a data collapse of
structure factor~Fig. 5!, which gives evidence for the exis
tence of a crossover, in the region around the peak, betw
two different scaling forms. Both the preasymptotic and t
asymptotic scaling functions are well fitted by the form

F~x!;e2a~x221!2
, ~40!

which describes the large-N @9# and the BH structure facto
@12,19# around the peak. The change in the value ofa in
going from one regime to the other means that around
peak C0

(BH)(kW ,t) prevails overCnl
(BH)(kW ,t) long enough not

only to go past the linear region, but also to leave behind
intermediate time interval (t1 ,t2) where the dynamics is
nonlinear with the self-consistency relation in Eq.~29! satu-
rated to a good extent byC0

(BH)(kW ,t) alone. As a result, non
linear mean field behavior shows up around the peak.

FIG. 5. Scaled structure factor of Fig. 2.
in-
e
g

FIG. 6. Effective exponenta(x,t) for short
times in the BH model withd52, N5103, D
51028, and TF50. The different curves are
computed for subsequent nonoverlapping time
tervals of duration exponentially growing. Th
same applies to all other plots of the multiscalin
spectrum.



PRE 58 5417OVERALL TIME EVOLUTION IN PHASE-ORDERING KINETICS
FIG. 7. Effective exponenta(x,t) for long
times in the BH model withd52, N5103, D
51028, andTF50.
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The picture of the overall evolution is completed by t
behavior of the effective exponenta(x,t). In Fig. 6, refer-
ring to times within the early stage, the mechanism of bre
down of the linear approximation described above is clea
displayed. For all the curves, except the last one, there
two qualitatively different behaviors forx. x̂(t) and x

, x̂(t), with x̂(t) decreasing with time. Forx, x̂(t) the ef-
fective exponenta(x,t) is well described by the linear ap
proximation~39!, while for x. x̂(t) it is essentially flat. This
corresponds to the onset of the power law to the right of
peak in the structure factor in Fig. 2. The retarded appe
ance of the other power law tail to the left of the peak c
responds to the deviation from the linear form ofa(x,t) for
small x in the last curve of Fig. 6. The timings of the devi
tions from linear behavior at the different values ofx are a
consequence of the shape~39! of the effective exponent. The
breakdown of linear behavior shows up first at largex, where
a(x,t) is large andnegative, and later on aroundx50,
wherea(x,t), although small, is positive.

Next the behavior ofa(x,t) over the subsequent tim
history in Fig. 7 shows the formation of very pronounc
peaks to the right and to the left ofx51. These are due to th
very fast growth of the power law tails in the early stage,
is evident from the spacing of the curves in Fig. 2. In th
time regime the peak is the slowest growing mode in
system. The multiscaling behavior aroundx51, which is
produced by the mean field behavior of the peak in the
termediate time regime, should be noted. Later on the cu
for a(x,t) flatten and collapse around the constant va
a(x)52. The disappearance of the time dependence f
a(x,t) reflects the onset of standard scaling in the late sta
It should be noted, however, that the approach to asymp
scaling is quite a slow process since a small upward cu
ture ofa(x) persists for a very long time. This curvature w
observed in early measurements ofa(x) in a variety of sys-
tems and was correctly interpreted as evidence that the l
time behavior, although not yet fully asymptotic, was de
nitely approaching the standard scaling behavior@23#.

As a test of the above analysis let us consider the
pected behavior upon making the initial fluctuations lar
-
y
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(D51) and 1/N(N5106) smaller. The immediate conse
quences should then be the total absence of a linear reg
and a considerable extension of the time interval wh
C0

(BH)(kW ,t) prevails overCnl
(BH)(kW ,t). It turns out that in this

case it is not crucial to have extremely precise data, so
present results ford53. Inspection of the evolution of the
structure factor~Fig. 8! reveals a different morphology from
the case of smallD and the absence of the linear behavior
the peak is quite evident. Furthermore, the behavior of
tails is less dramatic and a power law appears only at
largest times for large values of the wave vector. More p
cisely, looking at the time dependence ofkm(t) andC(km ,t)
in Figs. 3 and 4, we can recognize an early regime, wh
lasts up to a time very close tot1 , followed by a second
regime characterized by power laws. The features of
early regime can be explained from the behavior
C0

(BH)(kW ,t) for short time. Namely, the exponential in th
solution of the large-N model ~24! is peaked at

km
2 52

E
0

t

dt8R~ t8!

2t
. ~41!

FIG. 8. Structure factor in the BH model withd53, N5103,
D51, andTF50.
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FIG. 9. Effective exponenta(x,t) in the BH
model withd53, N5103, D51, andTF50.
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For very small t one hasR(t8).r 1gS(0) and therefore
km

2 .2@r 1gS(0)#/2. Since in the case consideredr
1gS(0).0, we havekm

2 ,0. This means that for very sho
timesC(k,t) is monotonically decreasing and the maximu
is at k50. During this short time interval~not shown in our
plots! km

215` andC(km ,t)5D. As time proceeds,S(t) gets
smaller and*0

t dt8R(t8) rapidly becomes negative whilekm
2

becomes positive and starts growing. This time interval c
responds to the decreasing behavior ofkm

21(t) in Fig. 3 for
ln(t),0. Therefore, in the early regime the right-hand s
of Eq. ~29! is dominated by the contributionC0

(BH)(kW ,t).
Later on coarsening begins with power laws both

km(t) andC(km ,t). The behavior of the effective expone
in Fig. 9 shows scaling sincea(x,t) becomes time indepen
dent. The shape ofa(x) obeys quite well the mean fiel
multiscaling form~21! for x,x* and the standard scalin
form a(x)5d53 for x.x* . Namely, in the region where
a0(x) is negativeCnl

(BH)(kW ,t) dominates, while in the region
wherea0(x) is positive, even thoughda(x)5d2a0(x) is
also positive, due to the large value ofD, it is C0

(BH)(kW ,t)
r-

r

that prevails and not just around the peak but for all valu
x,x* . This is an intermediate scaling regime, characteriz
by mean field behavior over an extended range of wave v
tors. Eventually, there must be the crossover to
asymptotic regime with standard scaling over all leng
scales. This occurs for times larger than those considere
our computation.

B. TF>0

With a finite final temperature all three terms are pres
on the right-hand side of Eq.~29!. Without going to the most
general case, for our purposes it is sufficiently illustrative
considerTF@1/N. In this case, we expect to find, after th
early stage, a fairly long intermediate regime characteri
by the finite temperature mean field behavior discussed
Sec. II. The eventual asymptotic regime lies beyond the t
interval considered in the computation. In the opposite lim
TF!1/N, the intermediate regime is expected to be ve
similar to the one analyzed above withTF50.

Choosingd53, N5106, andTF51023, let us first con-
sider the behavior of the effective exponenta(x,t) whenD
FIG. 10. Effective exponenta(x,t) in the BH
model with d53, N5106, D50, and TF

51023.
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FIG. 11. Effective exponenta(x,t) in the BH
model with d53, N5106, D51, and TF

51023.
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50. In this case an early linear regime is expected. Thi
demonstrated by the set of the first few curves in Fig.
which follows closely the behavior of Eq.~A15! in the Ap-
pendix. In particular, the signature of linear behavior w
finite temperature is given by the relaxation ofa(x,t) to zero
for x.x* , which corresponds to the fast relaxation~13! to
the time independent value ofC(kW ,t) for k.k0 . After the
early stage, Fig. 10 displays the onset of the multisca
regime with a shape ofa(x) well represented byaT(x) in
Eq. ~19!. Hence, with this choice of the parameters, in t
intermediate regimeCTF

(BH)(kW ,t) dominates the right-hand

side of Eq.~29!, yielding finite temperature mean field be
havior. Changing the size of the initial fluctuations to t
large valueD51 ~Fig. 11!, in the intermediate regime w
find a different multiscaling behavior. Forx,x* , a(x) is
well represented by a0(x)53c(x), while for x
.x* , a(x).2, suggesting that in this regiona(x)
5aT(x). Hence we find a behavior of the type described
the discussion of the large-N model in Sec. II. Namely, the
first two terms dominate the third one in Eq.~29! and among
them C0

(BH)(kW ,t) dominates forx,x* , while CTF

(BH)(kW ,t)

dominates forx.x* . The limitation of CPU time has no

FIG. 12. Structure factor in the CHC model withd53, D
58.331028, andTF50.
is
,

g

allowed us to pursue the time evolution any further. Ho
ever, on the basis of Eq.~29! we expect that there will be a
second preasymptotic regime withCTF

(BH)(kW ,t) dominating

also forx,x* and producing the multiscaling behavior wit
a(x)5aT(x) for all x, before standard scaling witha(x)
53 is eventually established.

IV. SCALAR CAHN-HILLIARD-COOK MODEL

In this section we analyze the overall time evolution
the structure factor for the ordering dynamics of the sca
CHC. The main point is that the dependence of the pre
ymptotic behavior on the parameters of the quenchD andTF
follows patterns very similar to those just described in t
BH model.

We consider first the zero-temperature quench of thd
53 system with small initial fluctuationsD58.331028.
Apart from quantitative aspects to be specified below, it
evident from the inspection of Fig. 12 that the basic eleme
in the evolution of the structure factor are the same as in
analogous plot of Fig. 2 for the BH model. Here too there
an early regime characterized by linear behavior of the p
and rapid growth of power laws on the tails. The early

FIG. 13. Time evolution of the inverse peak position of t
structure factor in the CHC model withd53.
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gime is abruptly followed by the onset of coarsening, whi
as in the BH model, displays an intermediate regime del
ited by an anomaly in the position and the height of the p
before the eventual late stage is entered. It is then interes
to see if, as in the BH model, this intermediate regime can
associated with the manifestation of nonlinear mean fi
behavior. Actually, that it is so can be established in an e
more clear-cut way than in the BH model. In fact, the me
field growth exponent isz54, while in the scalar systemz
53. These are precisely the values we find fromkm(t) ~Fig.
13!, which gives 1/z50.25060.003 in the intermediate re
gime and 1/z50.32160.005 in the late stage. FromC(km ,t)
in Fig. 14 we find consistentlyd/z50.73060.002 in the in-
termediate regime, while no clear power law can be extrac
from the data of the late stage. The existence of the m
field scaling regime around the peak in the intermediate
gime is also demonstrated by the data collapse in Fig.
The fit to the form~40! of the scaling function works well for
preasymptotic scaling, as in Fig. 5, while it is inadequate
the asymptotic behavior. Finally, the comparison of the
havior of the effective exponenta(x,t) in Figs. 16 and 7
completes the evidence for the close similarity in the ove

FIG. 14. Time evolution of the height of the structure fact
peak in the CHC model withd53.
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time evolution in the CHC and BH models with the sam
quench parameters. The difference in the space dimensio
ity is inessential. There are instead important quantitat
differences, as mentioned above, in various features of
structure factor. Thus, fork→0 the scalar system has ak4

tail, while in the BH model one finds thek2 tail. On the other
hand, for largek, Porod’s tailk2(d11) of the scalar case is
replaced by the exponential decay in the BH model and
analytical form of the structure factor is manifestly differe
around the peak in the two models. These differences s
that certainly the BH model cannot be used for an accu
computation of the scaling function in a scalar system,
are immaterial when considering the gross features of
overall time evolution, as we are doing here. Thus we h
enough evidence to establish the sequence early line
intermediate mean field–fully nonlinear late stage combin
with the dependence of the crossover time on the wave v
tor, much in the same way as we have found in the B
model. We can go one step further and regard this phen
enology, in analogy with the BH model, as the manifestat
of the competition among different components in the str
ture factor. If so, the phenomenology should respond to
variation of the parameters of the quench with patterns si

FIG. 15. Scaled structure factor of Fig. 12.
FIG. 16. Effective exponenta(x,t) for long
times in the CHC model withd53, D58.3
31028, andTF50.
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lar to those already observed in the BH model. As a matte
fact, takingD51, the overall behavior of the structure fact
changes from that of Fig. 12 to the one in Fig. 17, clos
reproducing the change in morphology observed betw
Figs. 2 and 8. The same observation applies to the beha
of km andC(km ,t). Comparing Figs. 13 and 14 with Figs.
and 4, the similarity is very close and it is definitely esta
lished upon comparing Fig. 18 with Fig. 9 for the effecti
exponenta(x,t). Therefore, by makingD large a consider-
able extension of the intermediate regime is observed, a
the BH model, and the manifestation of the mean field
havior takes place in the same way, witha(x).a0(x) for
x,x* anda(x).d53 for x.x* .

In the scalar case, however, a less rich variety of pre
ymptotic behaviors can be obtained by varying the para
eters of the quench, due to much more rigidity in the mod
in the sense thatN51 does not allow for the modulation a
will of the strength of the nonlinear term, which is alwa
large. In particular, because of the upper boundTF,Tc it is
not possible to realize the conditions for the temperat
term to be overwhelmingly larger than the nonlinear ter
For this reason the phenomenology observed withTF.0 is

FIG. 17. Structure factor in the CHC model withd53, D
52.083, andTF50.
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not significantly different from the one illustrated above~see
Figs. 13 and 14!.

V. CONCLUSIONS

In this paper we have studied the global evolution of t
structure factor from the very beginning of the quench do
to the fully developed late stage in a system with a conser
order parameter. By making a comparative study of the
and CHC models under variation of the parameters of
quenchD and TF we have been able to identify gener
features in the preasymptotic behavior. Prominent am
these are~i! the wave vector dependence of the time durat
of the early and intermediate regimes and~ii ! the mean field
character of the preasymptotic behavior. These properties
tightly linked together. The existence of a mean field regi
requires, in fact, multiscaling behavior, which in turn implie
a wave vector dependence of the crossover time. On
whole, the complex phenomenology of the preasymptotic
havior can be accounted for in a fairly simple mann
through the competition of different contributions as exe
plified in the structure of Eq.~29!. While for the BH model
this is a direct consequence of the form of the equation
motion, the applicability of Eq.~29! to the evolution of the
CHC model is a nontrivial result. It should be noted that t
preasymptotic phenomenology presented above is, in p
ciple, experimentally observable and it would be interest
to perform a multiscaling analysis of early time experimen
data in order to look for the crossover from mean field
truly asymptotic behavior.

On the basis of the results produced, the BH model qu
fies for a reference theory of phase-ordering kinetics t
captures most of the qualitative ingredients entering the p
nomenology of the process. In other words, the model can
used as the starting point for theoretical work aimed at
improvement of the approximation in order to have a be
performance in the computation of asymptotic propert
such as the shape of the scaling function. In closing, it sho
be mentioned that the structure of the overall time evolut
analyzed in this paper is by no means limited to the case
FIG. 18. Effective exponenta(x,t) in the
CHC model withd53, D52.083, andTF50.
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a conserved order parameter. The crossover from mean
to asymptotic behavior is expected to be a relevant featur
the preasymptotic regime also when the order paramete
not conserved. However, in the latter case it is much m
delicate to detect than in the former. With a conserved or
parameter the crossover is made evident by the change i
growth exponent fromz54 to z53 and most of all by the
spectacular change from multiscaling to standard scal
These elements of discrimination are absent in the nonc
served case since the crossover does not involve any ch
in the valuez52 of the growth exponent and scaling
standard in both the mean field and asymptotic regim
Work in this direction is in progress.

APPENDIX

In this appendix we compute the form of the effecti
exponenta(x,t) during the linear regime for finite quenc
temperature and vanishing initial fluctuations. WhenTF.0
andD50 the structure factor~10! takes three possible form
depending on the range of the wave vectors considere
2k2(k21r )t!21,

C~k,t !52
1

k21r
exp@22k2~k21r !t#. ~A1!

If u2k2(k21r )tu!1,

C~k,t !52k2t. ~A2!

If 2k2(k21r )t@1,

C~k,t !5
1

k21r
. ~A3!

The boundaries between such ranges are fixed by the co
tions

2k2~k21r !t51, 2k2~k21r !t521. ~A4!

The first has only one real positive solution

k1~ t !5
A2r 1Ar 212/t

2
~A5!

for all times. The second has two real positive solutions

k2~ t !5A2r 1Ar 222/t

2
, k3~ t !5A2r 2Ar 222/t

2
~A6!

but only for t.2/r 2.
Hence two distinct linear regimes can be identified, d

pending on whether the time is greater or smaller thant0
[2/r 2. For t,t0 the k.0 axis is divided into two intervals
ld
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the
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by k1(t). For k@k1(t) the argument of the exponential i
Eq. ~10! is large and positive, yielding the form~A3!, while
it is small fork!k1(t) and the structure factor takes the for
~A2!. Notice thatk1(t) is proportional tot21/4 for small t.

Later on, fort.t0 , the wave vector axis is divided into
four intervals by k1(t).k2(t).k3(t).0. For k@k1(t),
C(kW ,t) still has the form ~A3!. In the rangek3(t),k
,k2(t), the structure factor takes the form~A1!. In the two
other intervals@k,k3(t) and k2(t),k,k1(t)] it maintains
the form ~A2!. The values ofk3(t) andk2(t) coincide fort
5t0 , while they go asymptotically to zero andA2r , respec-
tively, for large times.

Using Eqs.~A1!–~A3! and ~35!, the form of a(x,t) is
readily computed. For a structure factor obeying Eq.~A3!
and for largex one finds

a~x,t !5
2lnL2~ t !

lnL1~ t !
. ~A7!

When Eq.~A2! holds one has

a~x,t !5
ln@ t/L 2

2~ t !#

lnL1~ t !
~A8!

and finally, when Eq.~A1! is valid, neglecting logarithmic
corrections and definingk05A2r /2 one finds

a~x,t !5
2k0

4t

lnL1~ t !
c~x!. ~A9!

Notice that only in the latter case doesa(x,t) actually de-
pend onx.

In order to fully determinea(x,t) the explicit time depen-
dence of the scaling lengthsL1(t)5L(kmL)2/d21 andL2(t)
5km

21 is needed and this requires the determination of
time dependence of the peak positionkm during the two lin-
ear regimes. One can easily see that fort!t0 , km de-
creases ast21/4, while for longer timest@t0 it reaches the
constant valuekm5k0 . Using these expressions we the
have fort!t0

L1~ t !5t1/4, L2~ t !5t1/4, ~A10!

while for t@t0 ,

L1~ t !5t1/4 ~d52!, L1~ t !5k0
21/3t1/6 ~d53!,

~A11!

L2~ t !5k0
215const. ~A12!

We are finally able to write down the form of the effectiv
exponent in the linear regime with finite final temperatu
For t!t0 ,
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a~x,t !5H 2, x!x1~ t ![k/k1~ t !

2, x@x1~ t !.
~A13!

For t@t0 andd52,

a~x,t !5

¦

4
ln ~k0

2t !

ln t
, x!x2~ t ![k/k2~ t !

8k0
4t

ln t
c~x!, x2~ t !!x!x3~ t ![k/k3~ t !

4
ln ~k0

2t !

ln t
, x3~ t !!x!x1~ t !

8ln~k0
21!

ln t
, x@x1~ t !,

~A14!

while for d53,
F

.

.

te

Re
a~x,t !5

¦

6
ln~k0

2t !

ln~k0
22t !

, x!x2~ t !

12k0
4t

ln~k0
22t !

c~x!, x2~ t !!x!x3~ t !

6
ln~k0

2t !

ln~k0
22t !

, x3~ t !!x!x1~ t !

12ln~k0
21!

ln~k0
22t !

, x@x1~ t !.

~A15!

The most relevant feature of these expressions is thata(x,t)
vanishes for largex as time grows, as opposed to the ca
with D50, where the spectrum predicted by linear theo
becomes very large and negative forx.A2 as time grows.
e-
. E

e-

-
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